000 02433cam a22004935i 4500
001 21818939
003 OSt
005 20220215104720.0
006 m |o d |
007 cr |||||||||||
008 160308s2016 gw |||| o |||| 0|eng
010 _a 2019764671
020 _a9783319264363 (Pbk)
024 7 _a10.1007/978-3-319-26437-0
_2doi
035 _a(DE-He213)978-3-319-26437-0
040 _aDLC
_beng
_epn
_erda
_cIISERB
072 7 _aMAT002010
_2bisacsh
072 7 _aPBF
_2bicssc
072 7 _aPBF
_2thema
082 0 4 _a512.62 Ei83M
_223
100 1 _aEisenbud, David.
_928109
245 1 0 _aMinimal Free Resolutions over Complete Intersections
_cby David Eisenbud, Irena Peeva.
260 _aNew York:
_bSpringer,
_c2016.
300 _aX, 107 p.
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2152
520 _aThis book introduces a theory of higher matrix factorizations for regular sequences and uses it to describe the minimal free resolutions of high syzygy modules over complete intersections. Such resolutions have attracted attention ever since the elegant construction of the minimal free resolution of the residue field by Tate in 1957. The theory extends the theory of matrix factorizations of a non-zero divisor, initiated by Eisenbud in 1980, which yields a description of the eventual structure of minimal free resolutions over a hypersurface ring. Matrix factorizations have had many other uses in a wide range of mathematical fields, from singularity theory to mathematical physics.
650 0 _aAlgebraic geometry.
_928110
650 0 _aCategory theory (Mathematics).
_928111
650 0 _aCommutative algebra.
_928112
650 0 _aCommutative rings.
_928113
650 0 _aHomological algebra.
_928114
650 0 _aMathematical physics.
_928115
650 1 4 _aCommutative Rings and Algebras.
_928116
650 2 4 _aAlgebraic Geometry.
_928117
650 2 4 _aCategory Theory, Homological Algebra.
_928118
650 2 4 _aTheoretical, Mathematical and Computational Physics.
_928119
700 1 _aPeeva, Irena.
_928120
776 0 8 _iPrint version:
_tMinimal free resolutions over complete intersections
_z9783319264363
_w(DLC) 2015958653
776 0 8 _iPrinted edition:
_z9783319264363
776 0 8 _iPrinted edition:
_z9783319264387
830 0 _aLecture Notes in Mathematics,
_v2152
_928121
906 _a0
_bibc
_corigres
_du
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c9745
_d9745