000 03859nam a22004935i 4500
001 978-3-8348-9722-0
003 DE-He213
005 20210602114659.0
007 cr nn 008mamaa
008 100805s2010 gw | s |||| 0|eng d
020 _a9783834897220
_9978-3-8348-9722-0
024 7 _a10.1007/978-3-8348-9722-0
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
072 7 _aPBMW
_2thema
082 0 4 _a516.35
_223
100 1 _aGörtz, Ulrich.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aAlgebraic Geometry
_h[electronic resource] :
_bPart I: Schemes. With Examples and Exercises /
_cby Ulrich Görtz, Torsten Wedhorn.
250 _a1st ed. 2010.
264 1 _aWiesbaden :
_bVieweg+Teubner Verlag :
_bImprint: Vieweg+Teubner Verlag,
_c2010.
300 _aIV, 615 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aAdvanced Lectures in Mathematics,
_x0932-7134
505 0 _aPrevarieties -- Spectrum of a Ring -- Schemes -- Fiber products -- Schemes over fields -- Local Properties of Schemes -- Quasi-coherent modules -- Representable Functors -- Separated morphisms -- Finiteness Conditions -- Vector bundles -- Affine and proper morphisms -- Projective morphisms -- Flat morphisms and dimension -- One-dimensional schemes -- Examples.
520 _aThis book introduces the reader to modern algebraic geometry. It presents Grothendieck's technically demanding language of schemes that is the basis of the most important developments in the last fifty years within this area. A systematic treatment and motivation of the theory is emphasized, using concrete examples to illustrate its usefulness. Several examples from the realm of Hilbert modular surfaces and of determinantal varieties are used methodically to discuss the covered techniques. Thus the reader experiences that the further development of the theory yields an ever better understanding of these fascinating objects. The text is complemented by many exercises that serve to check the comprehension of the text, treat further examples, or give an outlook on further results. The volume at hand is an introduction to schemes. To get startet, it requires only basic knowledge in abstract algebra and topology. Essential facts from commutative algebra are assembled in an appendix. It will be complemented by a second volume on the cohomology of schemes. Prevarieties - Spectrum of a Ring - Schemes - Fiber products - Schemes over fields - Local properties of schemes - Quasi-coherent modules - Representable functors - Separated morphisms - Finiteness Conditions - Vector bundles - Affine and proper morphisms - Projective morphisms - Flat morphisms and dimension - One-dimensional schemes - Examples Prof. Dr. Ulrich Görtz, Institute of Experimental Mathematics, University Duisburg-Essen Prof. Dr. Torsten Wedhorn, Department of Mathematics, University of Paderborn.
650 0 _aAlgebraic geometry.
650 0 _aAlgebra.
650 1 4 _aAlgebraic Geometry.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11019
650 2 4 _aAlgebra.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11000
700 1 _aWedhorn, Torsten.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783834806765
830 0 _aAdvanced Lectures in Mathematics,
_x0932-7134
856 4 0 _uhttps://doi.org/10.1007/978-3-8348-9722-0
912 _aZDB-2-SMA
912 _aZDB-2-SXMS
999 _c9422
_d9422