000 03332nam a22004935i 4500
001 978-1-4757-4034-9
003 DE-He213
005 20210118114613.0
007 cr nn 008mamaa
008 130128s1988 xxu| s |||| 0|eng d
020 _a9781475740349
_9978-1-4757-4034-9
024 _a10.1007/978-1-4757-4034-9
_2doi
050 _aQA174-183
072 _aPBG
_2bicssc
072 _aMAT002010
_2bisacsh
072 _aPBG
_2thema
082 _a512.2
_223
100 _aArmstrong, Mark A.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 _aGroups and Symmetry
_h[electronic resource] /
_cby Mark A. Armstrong.
250 _a1st ed. 1988.
264 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c1988.
300 _aXI, 187 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 _aUndergraduate Texts in Mathematics,
_x0172-6056
505 _a1 Symmetries of the Tetrahedron -- 2 Axioms -- 3 Numbers -- 4 Dihedral Groups -- 5 Subgroups and Generators -- 6 Permutations -- 7 Isomorphisms -- 8 Plato’s Solids and Cayley’s Theorem -- 10 Products -- 11 Lagrange’s Theorem -- 12 Partitions -- 13 Cauchy’s Theorem -- 14 Conjugacy -- 15 Quotient Groups -- 16 Homomorphisms -- 17 Actions, Orbits, and Stabilizers -- 18 Counting Orbits -- 19 Groups -- 20 The Sylow Theorems -- 21 Finitely Generated Abelian Groups -- 22 Row and Column Operations -- 23 Automorphisms -- 24 The Euclidean Group -- 25 Lattices and Point Groups -- 26 Wallpaper Patterns -- 27 Free Groups and Presentations -- 28 Trees and the Nielsen-Schreier Theorem.
520 _aGroups are important because they measure symmetry. This text, designed for undergraduate mathematics students, provides a gentle introduction to the highlights of elementary group theory. Written in an informal style, the material is divided into short sections each of which deals with an important result or a new idea. Throughout the book, the emphasis is placed on concrete examples, many of them geometrical in nature, so that finite rotation groups and the seventeen wallpaper groups are treated in detail alongside theoretical results such as Lagrange's theorem, the Sylow theorems, and the classification theorem for finitely generated abelian groups. A novel feature at this level is a proof of the Nielsen-Schreier theorem, using group actions on trees. There are more than three hundred exercises and approximately sixty illustrations to help develop the student's intuition.
650 _aGroup theory.
650 _aGroup Theory and Generalizations.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11078
710 _aSpringerLink (Online service)
773 _tSpringer Nature eBook
776 _iPrinted edition:
_z9781441930859
776 _iPrinted edition:
_z9780387966755
776 _iPrinted edition:
_z9781475740356
830 _aUndergraduate Texts in Mathematics,
_x0172-6056
856 _uhttps://doi.org/10.1007/978-1-4757-4034-9
912 _aZDB-2-SMA
912 _aZDB-2-SXMS
912 _aZDB-2-BAE
999 _c9357
_d9357