000 01723cam a22003617a 4500
001 17400478
003 OSt
005 20161229131303.0
008 120725s2013 nyua b 001 0 eng d
010 _a 2012945172
015 _aGBB267696
_2bnb
016 7 _a016122639
_2Uk
020 _a9781441999818 (hbk. : alk. paper)
020 _a1441999817 (hbk. : alk. paper)
020 _a9781441999825 (ebk.)
_c€ 79.95
040 _aIISER BHOPAL
_cTBS ( Recommended by Dr. Nikita Agarwal)
082 0 4 _a514.34 L513I2
_223
100 1 _aLee, John M.,
_d1950-
_917982
222 _aMathematics
222 _aManifolds
222 _amathematics collection
245 1 0 _aIntroduction to smooth manifolds
_cJohn M. Lee.
250 _a2nd Edition
260 _aNew York ;
_aLondon :
_bSpringer,
_c2013.
300 _axv, 708 p. :
_bill. ;
_c24 cm.
490 1 _aGraduate texts in mathematics ;
_v218
504 _aIncludes bibliographical references (p. 675-677) and indexes.
505 0 _a1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.
650 0 _aManifolds (Mathematics)
_917983
830 0 _aGraduate texts in mathematics ;
_v218.
_917984
942 _2ddc
_cBK
955 _apc17 2012-07-25
999 _c7715
_d7715