000 | 02690nam a22005295i 4500 | ||
---|---|---|---|
001 | 978-3-642-31695-1 | ||
003 | DE-He213 | ||
005 | 20150803155057.0 | ||
007 | cr nn 008mamaa | ||
008 | 121009s2013 gw | s |||| 0|eng d | ||
020 |
_a9783642316951 _9978-3-642-31695-1 |
||
024 | 7 |
_a10.1007/978-3-642-31695-1 _2doi |
|
050 | 4 | _aQA564-609 | |
072 | 7 |
_aPBMW _2bicssc |
|
072 | 7 |
_aMAT012010 _2bisacsh |
|
082 | 0 | 4 |
_a516.35 _223 |
100 | 1 |
_aSabbah, Claude. _eauthor. |
|
245 | 1 | 0 |
_aIntroduction to Stokes Structures _h[electronic resource] / _cby Claude Sabbah. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2013. |
|
300 |
_aXIV, 249 p. 14 illus., 1 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2060 |
|
520 | _aThis research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aGeometry, algebraic. | |
650 | 0 | _aDifferential Equations. | |
650 | 0 | _aDifferential equations, partial. | |
650 | 0 | _aSequences (Mathematics). | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aAlgebraic Geometry. |
650 | 2 | 4 | _aOrdinary Differential Equations. |
650 | 2 | 4 | _aApproximations and Expansions. |
650 | 2 | 4 | _aSequences, Series, Summability. |
650 | 2 | 4 | _aSeveral Complex Variables and Analytic Spaces. |
650 | 2 | 4 | _aPartial Differential Equations. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783642316944 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2060 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-642-31695-1 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
999 |
_c6969 _d6969 |