000 02690nam a22005295i 4500
001 978-3-642-31695-1
003 DE-He213
005 20150803155057.0
007 cr nn 008mamaa
008 121009s2013 gw | s |||| 0|eng d
020 _a9783642316951
_9978-3-642-31695-1
024 7 _a10.1007/978-3-642-31695-1
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
082 0 4 _a516.35
_223
100 1 _aSabbah, Claude.
_eauthor.
245 1 0 _aIntroduction to Stokes Structures
_h[electronic resource] /
_cby Claude Sabbah.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2013.
300 _aXIV, 249 p. 14 illus., 1 illus. in color.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2060
520 _aThis research monograph provides a geometric description of holonomic differential systems in one or more variables. Stokes matrices form the extended monodromy data for a linear differential equation of one complex variable near an irregular singular point. The present volume presents the approach in terms of Stokes filtrations. For linear differential equations on a Riemann surface, it also develops the related notion of a Stokes-perverse sheaf. This point of view is generalized to holonomic systems of linear differential equations in the complex domain, and a general Riemann-Hilbert correspondence is proved for vector bundles with meromorphic connections on a complex manifold. Applications to the distributions solutions to such systems are also discussed, and various operations on Stokes-filtered local systems are analyzed.
650 0 _aMathematics.
650 0 _aGeometry, algebraic.
650 0 _aDifferential Equations.
650 0 _aDifferential equations, partial.
650 0 _aSequences (Mathematics).
650 1 4 _aMathematics.
650 2 4 _aAlgebraic Geometry.
650 2 4 _aOrdinary Differential Equations.
650 2 4 _aApproximations and Expansions.
650 2 4 _aSequences, Series, Summability.
650 2 4 _aSeveral Complex Variables and Analytic Spaces.
650 2 4 _aPartial Differential Equations.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642316944
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2060
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-642-31695-1
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c6969
_d6969