000 | 03143nam a22005055i 4500 | ||
---|---|---|---|
001 | 978-3-319-02231-4 | ||
003 | DE-He213 | ||
005 | 20150803155057.0 | ||
007 | cr nn 008mamaa | ||
008 | 131114s2014 gw | s |||| 0|eng d | ||
020 |
_a9783319022314 _9978-3-319-02231-4 |
||
024 | 7 |
_a10.1007/978-3-319-02231-4 _2doi |
|
050 | 4 | _aQA297-299.4 | |
072 | 7 |
_aPBKS _2bicssc |
|
072 | 7 |
_aMAT021000 _2bisacsh |
|
072 | 7 |
_aMAT006000 _2bisacsh |
|
082 | 0 | 4 |
_a518 _223 |
100 | 1 |
_aKruse, Raphael. _eauthor. |
|
245 | 1 | 0 |
_aStrong and Weak Approximation of Semilinear Stochastic Evolution Equations _h[electronic resource] / _cby Raphael Kruse. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2014. |
|
300 |
_aXIV, 177 p. 4 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2093 |
|
505 | 0 | _aIntroduction -- Stochastic Evolution Equations in Hilbert Spaces -- Optimal Strong Error Estimates for Galerkin Finite Element Methods -- A Short Review of the Malliavin Calculus in Hilbert Spaces -- A Malliavin Calculus Approach to Weak Convergence -- Numerical Experiments -- Some Useful Variations of Gronwall’s Lemma -- Results on Semigroups and their Infinitesimal Generators -- A Generalized Version of Lebesgue’s Theorem -- References -- Index. | |
520 | _aIn this book we analyze the error caused by numerical schemes for the approximation of semilinear stochastic evolution equations (SEEq) in a Hilbert space-valued setting. The numerical schemes considered combine Galerkin finite element methods with Euler-type temporal approximations. Starting from a precise analysis of the spatio-temporal regularity of the mild solution to the SEEq, we derive and prove optimal error estimates of the strong error of convergence in the first part of the book. The second part deals with a new approach to the so-called weak error of convergence, which measures the distance between the law of the numerical solution and the law of the exact solution. This approach is based on Bismut’s integration by parts formula and the Malliavin calculus for infinite dimensional stochastic processes. These techniques are developed and explained in a separate chapter, before the weak convergence is proven for linear SEEq. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aDifferential equations, partial. | |
650 | 0 | _aNumerical analysis. | |
650 | 0 | _aDistribution (Probability theory). | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aNumerical Analysis. |
650 | 2 | 4 | _aProbability Theory and Stochastic Processes. |
650 | 2 | 4 | _aPartial Differential Equations. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319022307 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2093 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-02231-4 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
999 |
_c6947 _d6947 |