000 | 03142nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-319-01982-6 | ||
003 | DE-He213 | ||
005 | 20150803155057.0 | ||
007 | cr nn 008mamaa | ||
008 | 131025s2014 gw | s |||| 0|eng d | ||
020 |
_a9783319019826 _9978-3-319-01982-6 |
||
024 | 7 |
_a10.1007/978-3-319-01982-6 _2doi |
|
050 | 4 | _aT57-57.97 | |
072 | 7 |
_aPBW _2bicssc |
|
072 | 7 |
_aMAT003000 _2bisacsh |
|
082 | 0 | 4 |
_a519 _223 |
100 | 1 |
_aBraides, Andrea. _eauthor. |
|
245 | 1 | 0 |
_aLocal Minimization, Variational Evolution and Γ-Convergence _h[electronic resource] / _cby Andrea Braides. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2014. |
|
300 |
_aXI, 174 p. 42 illus. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2094 |
|
505 | 0 | _aIntroduction -- Global minimization -- Parameterized motion driven by global minimization -- Local minimization as a selection criterion -- Convergence of local minimizers -- Small-scale stability -- Minimizing movements -- Minimizing movements along a sequence of functionals -- Geometric minimizing movements -- Different time scales -- Stability theorems -- Index. | |
520 | _aThis book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aGlobal analysis (Mathematics). | |
650 | 0 | _aFunctional analysis. | |
650 | 0 | _aDifferential equations, partial. | |
650 | 0 | _aMathematical optimization. | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aApplications of Mathematics. |
650 | 2 | 4 | _aPartial Differential Equations. |
650 | 2 | 4 | _aCalculus of Variations and Optimal Control; Optimization. |
650 | 2 | 4 | _aApproximations and Expansions. |
650 | 2 | 4 | _aAnalysis. |
650 | 2 | 4 | _aFunctional Analysis. |
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319019819 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2094 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-01982-6 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
999 |
_c6945 _d6945 |