000 03142nam a22005415i 4500
001 978-3-319-01982-6
003 DE-He213
005 20150803155057.0
007 cr nn 008mamaa
008 131025s2014 gw | s |||| 0|eng d
020 _a9783319019826
_9978-3-319-01982-6
024 7 _a10.1007/978-3-319-01982-6
_2doi
050 4 _aT57-57.97
072 7 _aPBW
_2bicssc
072 7 _aMAT003000
_2bisacsh
082 0 4 _a519
_223
100 1 _aBraides, Andrea.
_eauthor.
245 1 0 _aLocal Minimization, Variational Evolution and Γ-Convergence
_h[electronic resource] /
_cby Andrea Braides.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2014.
300 _aXI, 174 p. 42 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2094
505 0 _aIntroduction -- Global minimization -- Parameterized motion driven by global minimization -- Local minimization as a selection criterion -- Convergence of local minimizers -- Small-scale stability -- Minimizing movements -- Minimizing movements along a sequence of functionals -- Geometric minimizing movements -- Different time scales -- Stability theorems -- Index.
520 _aThis book addresses new questions related to the asymptotic description of converging energies from the standpoint of local minimization and variational evolution. It explores the links between Gamma-limits, quasistatic evolution, gradient flows and stable points, raising new questions and proposing new techniques. These include the definition of effective energies that maintain the pattern of local minima, the introduction of notions of convergence of energies compatible with stable points, the computation of homogenized motions at critical time-scales through the definition of minimizing movement along a sequence of energies, the use of scaled energies to study long-term behavior or backward motion for variational evolutions. The notions explored in the book are linked to existing findings for gradient flows, energetic solutions and local minimizers, for which some generalizations are also proposed.
650 0 _aMathematics.
650 0 _aGlobal analysis (Mathematics).
650 0 _aFunctional analysis.
650 0 _aDifferential equations, partial.
650 0 _aMathematical optimization.
650 1 4 _aMathematics.
650 2 4 _aApplications of Mathematics.
650 2 4 _aPartial Differential Equations.
650 2 4 _aCalculus of Variations and Optimal Control; Optimization.
650 2 4 _aApproximations and Expansions.
650 2 4 _aAnalysis.
650 2 4 _aFunctional Analysis.
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319019819
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2094
856 4 0 _uhttp://dx.doi.org/10.1007/978-3-319-01982-6
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c6945
_d6945