000 | 03032nam a22005415i 4500 | ||
---|---|---|---|
001 | 978-3-319-00828-8 | ||
003 | DE-He213 | ||
005 | 20150803155056.0 | ||
007 | cr nn 008mamaa | ||
008 | 130930s2013 gw | s |||| 0|eng d | ||
020 |
_a9783319008288 _9978-3-319-00828-8 |
||
024 | 7 |
_a10.1007/978-3-319-00828-8 _2doi |
|
050 | 4 | _aQA273.A1-274.9 | |
050 | 4 | _aQA274-274.9 | |
072 | 7 |
_aPBT _2bicssc |
|
072 | 7 |
_aPBWL _2bicssc |
|
072 | 7 |
_aMAT029000 _2bisacsh |
|
082 | 0 | 4 |
_a519.2 _223 |
100 | 1 |
_aDebussche, Arnaud. _eauthor. |
|
245 | 1 | 4 |
_aThe Dynamics of Nonlinear Reaction-Diffusion Equations with Small Lévy Noise _h[electronic resource] / _cby Arnaud Debussche, Michael Högele, Peter Imkeller. |
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2013. |
|
300 |
_aXIV, 165 p. 9 illus., 8 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2085 |
|
505 | 0 | _aIntroduction -- The fine dynamics of the Chafee- Infante equation -- The stochastic Chafee- Infante equation -- The small deviation of the small noise solution -- Asymptotic exit times -- Asymptotic transition times -- Localization and metastability -- The source of stochastic models in conceptual climate dynamics. | |
520 | _aThis work considers a small random perturbation of alpha-stable jump type nonlinear reaction-diffusion equations with Dirichlet boundary conditions over an interval. It has two stable points whose domains of attraction meet in a separating manifold with several saddle points. Extending a method developed by Imkeller and Pavlyukevich it proves that in contrast to a Gaussian perturbation, the expected exit and transition times between the domains of attraction depend polynomially on the noise intensity in the small intensity limit. Moreover the solution exhibits metastable behavior: there is a polynomial time scale along which the solution dynamics correspond asymptotically to the dynamic behavior of a finite-state Markov chain switching between the stable states. | ||
650 | 0 | _aMathematics. | |
650 | 0 | _aDifferentiable dynamical systems. | |
650 | 0 | _aDifferential equations, partial. | |
650 | 0 | _aDistribution (Probability theory). | |
650 | 1 | 4 | _aMathematics. |
650 | 2 | 4 | _aProbability Theory and Stochastic Processes. |
650 | 2 | 4 | _aDynamical Systems and Ergodic Theory. |
650 | 2 | 4 | _aPartial Differential Equations. |
700 | 1 |
_aHögele, Michael. _eauthor. |
|
700 | 1 |
_aImkeller, Peter. _eauthor. |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783319008271 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v2085 |
|
856 | 4 | 0 | _uhttp://dx.doi.org/10.1007/978-3-319-00828-8 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
999 |
_c6937 _d6937 |