000 03420cam a22005415i 4500
001 21820262
003 OSt
005 20250806164945.0
006 m |o d |
007 cr |||||||||||
008 170130s2017 gw |||| o |||| 0|eng
010 _a 2019765976
020 _a9783319828350 (Pbk)
024 7 _a10.1007/978-3-319-43476-6
_2doi
035 _a21820262
035 _a(DE-He213)978-3-319-43476-6
040 _aDLC
_beng
_epn
_erda
_cIISERB
072 7 _aMAT029000
_2bisacsh
072 7 _aPBT
_2bicssc
072 7 _aPBT
_2thema
072 7 _aPBWL
_2thema
082 0 4 _a519.2 B750D
_223
100 1 _aBremaud, Pierre.
_932614
245 1 0 _aDiscrete Probability Models and Methods :
_bProbability on Graphs and Trees, Markov Chains and Random Fields, Entropy and Coding /
_cby Pierre Brémaud.
260 _aSwitzarland:
_bSpringer Nature,
_c2017.
300 _a(XIV, 559 pages 92 illustrations)
490 1 _aProbability Theory and Stochastic Modelling,
_x2199-3130 ;
_v78
505 0 _aIntroduction -- 1.Events and probability -- 2.Random variables -- 3.Bounds and inequalities -- 4.Almost-sure convergence -- 5.Coupling and the variation distance -- 6.The probabilistic method -- 7.Codes and trees -- 8.Markov chains -- 9.Branching trees -- 10.Markov fields on graphs -- 11.Random graphs -- 12.Recurrence of Markov chains -- 13.Random walks on graphs -- 14.Asymptotic behaviour of Markov chains -- 15.Monte Carlo sampling -- 16. Convergence rates -- Appendix -- Bibliography.
520 _aThe emphasis in this book is placed on general models (Markov chains, random fields, random graphs), universal methods (the probabilistic method, the coupling method, the Stein-Chen method, martingale methods, the method of types) and versatile tools (Chernoff's bound, Hoeffding's inequality, Holley's inequality) whose domain of application extends far beyond the present text. Although the examples treated in the book relate to the possible applications, in the communication and computing sciences, in operations research and in physics, this book is in the first instance concerned with theory. The level of the book is that of a beginning graduate course. It is self-contained, the prerequisites consisting merely of basic calculus (series) and basic linear algebra (matrices). The reader is not assumed to be trained in probability since the first chapters give in considerable detail the background necessary to understand the rest of the book.
650 0 _aCoding theory.
_932615
650 0 _aComputer communication systems.
_932616
650 0 _aGraph theory.
_932617
650 0 _aInformation theory.
_932618
650 0 _aMathematical statistics.
_932619
650 0 _aProbabilities.
_932620
650 1 4 _aProbability Theory and Stochastic Processes.
_932621
650 2 4 _aCoding and Information Theory.
_932622
650 2 4 _aComputer Communication Networks.
_932623
650 2 4 _aGraph Theory.
_932624
650 2 4 _aProbability and Statistics in Computer Science.
_932625
776 0 8 _iPrint version:
_tDiscrete probability models and methods.
_z9783319434759
_w(DLC) 2016962040
776 0 8 _iPrinted edition:
_z9783319434759
776 0 8 _iPrinted edition:
_z9783319434773
776 0 8 _iPrinted edition:
_z9783319828350
830 0 _aProbability Theory and Stochastic Modelling,
_v78
_932626
906 _a0
_bibc
_corigres
_du
_encip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c10983
_d10983