000 01891cam a22003378i 4500
001 23626157
003 OSt
005 20250124110943.0
008 240330s2024 enk b 001 0 eng
010 _a 2024002976
020 _a9781009440783
_q(hardback)
040 _aDLC
_beng
_erda
_cIISERB
042 _apcc
050 0 0 _aQC174.17.G46
_bS74 2024
082 0 0 _a530.15 St34Q
_223/eng/20240412
100 1 _aSteinacker, Harold C.
_931100
245 1 0 _aQuantum geometry, matrix theory, and gravity /
_cHarold C. Steinacker.
260 _aCambridge:
_bCambridge University Press,
_c2024.
263 _a2406
300 _axvi, 402p.
504 _aIncludes bibliographical references and index.
505 0 _aDifferentiable manifolds -- Lie groups and coadjoint orbits -- Quantization of symplectic manifolds -- Quantum spaces and matrix geometry -- Covariant quantum spaces -- Noncommutative field theory -- Yang-Mills matrix models and quantum spaces -- Fuzzy extra dimensions -- Geometry and dynamics in Yang-Mills matrix models -- Higher-spin gauge theory on quantum spacetime -- Matrix theory : maximally supersymmetric matrix models -- Gravity as a quantum effect on quantum spacetime -- Matrix quantum mechanics and the BFSS model.
520 _a"The volume provides an introduction to quantization in a broad context, and a systematic development of quantum geometry in Matrix Theory and string theory. It addresses advanced students and researchers in theoretical physics and mathematics, who are interested in quantum aspects of space-time and geometry in a physical context"--
650 0 _aGeometric quantization.
_931101
650 0 _aMatrices.
_931102
650 0 _aString models.
_931103
650 0 _aGravity
_xMathematical models.
_931104
906 _a7
_bcbc
_corignew
_d1
_eecip
_f20
_gy-gencatlg
942 _2ddc
_cBK
999 _c10583
_d10583