000 | 02889cam a22003378i 4500 | ||
---|---|---|---|
001 | 22153362 | ||
003 | OSt | ||
005 | 20230501151131.0 | ||
008 | 210717s2022 enk b 001 0 eng | ||
010 | _a 2021029851 | ||
020 |
_a9788195782901 _q(paperback) |
||
040 |
_aLBSOR/DLC _beng _erda _cIISERB |
||
042 | _apcc | ||
050 | 0 | 0 |
_aQA188 _b.K45 2022 |
082 | 0 | 0 |
_a512.9434 K527M _223 |
100 | 1 |
_aKhare, Apoorva. _929217 |
|
245 | 1 | 0 |
_aMatrix analysis and entrywise positivity preservers _cApoorva Khare. |
260 |
_aNew Delhi: _bHindustan Book Agency, _c2022. |
||
263 | _a2112 | ||
300 | _axxii, 339p. | ||
504 | _aIncludes bibliographical references and index. | ||
505 | 0 | _aThe cone of positive semidefinite matrices -- The Schur product theorem and nonzero lower bounds -- Totally positive (T P) and Totally non-negative (T N) matrices -- T P matrices--generalized Vandermonde and Hankel moment matrices -- Entrywise powers preserving positivity in fixed dimension -- Mid-convex implies continuous, and 2 x 2 preservers -- Entrywise preservers of positivity on matrices with zero patterns -- Entrywise powers preserving positivity, monotonicity, superadditivity -- Loewner convexity and single matrix encoders of preservers -- Exercises -- History--Schoenberg, Rudin, Vasudeva, and metric geometry -- Loewner's determinant calculation in Horn's thesis -- The stronger Horn-Loewner theorem, via mollifiers -- Stronger Vasudeva and Schoenberg theorems, via Bernstein's theorem -- Proof of stronger Schoenberg theorem (part I)--positivity certificates -- Proof of stronger Schoenberg theorem (part II)--real analyticity -- Proof of stronger Schoenberg theorem (part III)--complex analysis -- Preservers of Loewner positivity on kernels -- Preservers of Loewner monotonicity and convexity on kernels -- Functions acting outside forbidden diagonal blocks -- The Boas-Widder theorem on functions with positive differences -- Menger's results and Euclidean distance geometry -- Exercises -- Entrywise polynomial preservers and Horn-Loewner type conditions -- Polynomial preservers for rank-one matrices, via Schur polynomials -- First-order approximation and leading term of Schur polynomials -- Exact quantitative bound--monotonicity of Schur ratios -- Polynomial preservers on matrices with real or complex entries -- Cauchy and Littlewood's definitions of Schur polynomials -- Exercises. | |
650 | 0 |
_aMatrices. _929218 |
|
650 | 0 |
_aComposition operators. _929219 |
|
650 | 0 |
_aPositive operators. _929220 |
|
650 | 0 |
_aKernel functions. _929221 |
|
776 | 0 | 8 |
_iOnline version: _aKhare, Apoorva. _tMatrix analysis and entrywise positivity preservers _dCambridge, United Kingdom ; New York, NY : Cambridge University Press, 2022 _z9781108867122 _w(DLC) 2021029852 |
906 |
_a7 _bcbc _corignew _d1 _eecip _f20 _gy-gencatlg |
||
942 |
_2ddc _cBK |
||
999 |
_c10012 _d10012 |