Local cover image
Local cover image
Image from Google Jackets

Quantum mechanics for nanostructures Vladimir V. Mitin, Dmitry I. Sementsov, Nizami Z. Vagidov.

By: Contributor(s): Material type: TextTextPublication details: Cambridge : Cambridge University Press, 2015.Description: xv, 431 p. : ill. ; 26 cmISBN:
  • 9780521763660 (hardback)
  • 0521763665 (hardback)
Subject(s): DDC classification:
  • 620.5 M684Q 23
LOC classification:
  • TA357 .M58 2010
Contents:
Machine generated contents note: 1. Nanoworld and quantum physics; 2. Wave-particle duality and its manifestation in radiation and particle's behavior; 3. Layered nanostructures as the simplest systems to study electron behavior in one-dimensional potential; 4. Additional examples of quantized motion; 5. Approximate methods of finding quantum states; 6. Quantum states in atoms and molecules; 7. Quantization in nanostructures; 8. Nanostructures and their applications; Appendices; Index.
Summary: "The properties of new nanoscale materials, their fabrication and applications, as well as the operational principles of nanodevices and systems, are solely determined by quantum-mechanical laws and principles. This textbook introduces engineers to quantum mechanics and the world of nanostructures, enabling them to apply the theories to numerous nanostructure problems. The textbook covers the fundamentals of quantum mechanics, including uncertainty relations, the Schrödinger equation, perturbation theory, and tunneling. These are then applied to a quantum dot, the smallest artificial atom, and compared to hydrogen, the smallest atom in nature. Nanoscale objects with higher dimensionality, such as quantum wires and quantum wells, are introduced, as well as nanoscale materials and nanodevices. Numerous examples throughout the text help students to understand the material"--Provided by publisher.Summary: "The properties of new nanoscale materials, their fabrication and applications, as well as the operational principles of nanodevices and systems, are solely determined by quantum-mechanical laws and principles. This textbook introduces engineers to quantum mechanics and the world of nanostructures, enabling them to apply the theories to numerous nanostructure problems. The book covers the fundamentals of quantum mechanics, including uncertainty relations, the Schrodinger equation, perturbation theory, and tunneling. These are then applied to a quantum dot, the smallest artificial atom, and compared with the case of hydrogen, the smallest atom in nature. Nanoscale objects with higher dimensionality, such as quantum wires and quantum wells, are introduced, as well as nanoscale materials and nanodevices. Numerous examples throughout the text help students to understand the material"--Provided by publisher.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Notes Date due Barcode
Books Books Central Library, IISER Bhopal General Section 620.5 M684Q (Browse shelf(Opens below)) Available 11014
Books Books Central Library, IISER Bhopal Reference Section Reference 620.5 M684Q (Browse shelf(Opens below)) Not For Loan Reserve 11013

Includes index.

Machine generated contents note: 1. Nanoworld and quantum physics; 2. Wave-particle duality and its manifestation in radiation and particle's behavior; 3. Layered nanostructures as the simplest systems to study electron behavior in one-dimensional potential; 4. Additional examples of quantized motion; 5. Approximate methods of finding quantum states; 6. Quantum states in atoms and molecules; 7. Quantization in nanostructures; 8. Nanostructures and their applications; Appendices; Index.

"The properties of new nanoscale materials, their fabrication and applications, as well as the operational principles of nanodevices and systems, are solely determined by quantum-mechanical laws and principles. This textbook introduces engineers to quantum mechanics and the world of nanostructures, enabling them to apply the theories to numerous nanostructure problems. The textbook covers the fundamentals of quantum mechanics, including uncertainty relations, the Schrödinger equation, perturbation theory, and tunneling. These are then applied to a quantum dot, the smallest artificial atom, and compared to hydrogen, the smallest atom in nature. Nanoscale objects with higher dimensionality, such as quantum wires and quantum wells, are introduced, as well as nanoscale materials and nanodevices. Numerous examples throughout the text help students to understand the material"--Provided by publisher.

"The properties of new nanoscale materials, their fabrication and applications, as well as the operational principles of nanodevices and systems, are solely determined by quantum-mechanical laws and principles. This textbook introduces engineers to quantum mechanics and the world of nanostructures, enabling them to apply the theories to numerous nanostructure problems. The book covers the fundamentals of quantum mechanics, including uncertainty relations, the Schrodinger equation, perturbation theory, and tunneling. These are then applied to a quantum dot, the smallest artificial atom, and compared with the case of hydrogen, the smallest atom in nature. Nanoscale objects with higher dimensionality, such as quantum wires and quantum wells, are introduced, as well as nanoscale materials and nanodevices. Numerous examples throughout the text help students to understand the material"--Provided by publisher.

There are no comments on this title.

to post a comment.

Click on an image to view it in the image viewer

Local cover image



Contact for Queries: skpathak@iiserb.ac.in