Image from Google Jackets

Quantum theory for mathematicians Brian C. Hall.

By: Series: Graduate texts in mathematics ; 267.Publication details: New York: Springer, 2013.Description: xvi, 554 pages : illustrations ; 24 cmISBN:
  • 9781461471158 (acidfree paper)
Subject(s): DDC classification:
  • 23 530.12 H174Q
LOC classification:
  • QC174.12 .H346 2013
Contents:
The experimental origins of quantum mechanics: Is light a wave or a particle? ; Is an electron a wave or a particle? ; Schrödinger and Heisenberg ; A matter of interpretation ; Exercises -- A first approach to classical mechanics: Motion in R¹ ; Motion in R[superscript n] ; Systems of particles ; Angular momentum ; Poisson brackets and Hamiltonian mechanics ; The Kepler problem and the Runge-Lenz vector ; Exercises -- First approach to quantum mechanics: Waves, particles, and probabilities ; A few words about operators and their adjoints ; Position and the position operator ; Momentum and the momentum operator ; The position and momentum operators ; Axioms of quantum mechanics : operators and measurements ; Time-evolution in quantum theory ; The Heisenberg picture ; Example : a particle in a box ; Quantum mechanics for a particle in R [superscript n] ; Systems of multiple particles ; Physics notation ; Exercises -- The free Schrödinger equation: Solution by means of the Fourier transform ; Solution as a convolution ; Propagation of the wave packet : first approach ; Propagation of the wave packet : second approach ; Spread of the wave packet ; Exercises -- Particle in a square well: The time-independent Schrödinger equation ; Domain questions and the matching conditions ; Finding square-integrable solutions ; Tunneling and the classically forbidden region ; Discrete and continuous spectrum ; Exercises -- Perspectives on the spectral theorem: The difficulties with the infinite-dimensional case ; The goals of spectral theory ; A guide to reading ; The position operator ; Multiplication operators ; The momentum operator -- The spectral theorem for bounded self-adjoint operators : statements: Elementary properties of bounded operators ; Spectral theorem for bounded self-adjoint operators, I ; Spectral theorem for bounded self-adjoint operators, II ; Exercises -- The spectral theorem for bounded self-adjoint operators : proofs: Proof of the spectral theorem, first version ; Proof of the spectral theorem, second version ; Exercises -- Unbounded self-adjoint operators: Introduction ; Adjoint and closure of an unbounded operator ; Elementary properties of adjoints and closed operators ; The spectrum of an unbounded operator ; Conditions for self-adjointness and essential self-adjointness ; A counterexample ; An example ; The basic operators of quantum mechanics ; Sums of self-adjoint operators ; Another counterexample ; Exercises -- The spectral theorem for unbounded self-adjoint operators: Statements of the spectral theorem ; Stone's theorem and one-parameter unitary groups ; The spectral theorem for bounded normal operators ; Proof of the spectral theorem for unbounded self-adjoint operators ; Exercises -- The harmonic oscillator: The role of the harmonic oscillator ; The algebraic approach ; The analytic approach ; Domain conditions and completeness ; Exercises -- The uncertainty principle: Uncertainty principle, first version ; A counterexample ; Uncertainty principle, second version ; Minimum uncertainty states ; Exercises -- Quantization schemes for Euclidean space: Ordering ambiguities ; Some common quantization schemes ; The Weyl quantization for R²[superscript n] ; The "No go" theorem of Groenewold ; Exercises -- The Stone-Von Neumann theorem: A heuristic argument ; The exponentiated commutation relations ; The theorem ; The Segal-Bargmann space ; Exercises -- The WKB approximation: Introduction ; The old quantum theory and the Bohr-Sommerfeld condition ; Classical and semiclassical approximations ; The WKB approximation away from the turning points ; The Airy function and the connection formulas ; A rigorous error estimate ; Other approaches ; Exercises -- Lie groups, Lie algebras, and representations: Summary ; Matrix Lie groups ; Lie algebras ; The matrix exponential ; The Lie algebra of a matrix Lie group ; Relationships between Lie groups and Lie algebras ; Finite-dimensional representations of Lie groups and Lie algebras ; New representations from old ; Infinite-dimensional unitary representations ; Exercises -- Angular momentum and spin: The role of angular momentum in quantum mechanics ; The angular momentum operators in R³ ; Angular momentum from the Lie algebra point of view ; The irreducible representations of so(3) ; The irreducible representations of SO(3) ; Realizing the representations inside L²(S²) -- Realizing the representations inside L²(M³) ; Spin ; Tensor products of representations : "addition of angular momentum" ; Vectors and vector operators ; Exercises -- Radial potentials and the hydrogen atom: Radial potentials ; The hydrogen atom : preliminaries ; The bound states of the hydrogen atom ; The Runge-Lenz vector in the quantum Kepler problem ; The role of spin ; Runge-Lenz calculations ; Exercises -- Systems and subsystems, multiple particles: Introduction ; Trace-class and Hilbert-Schmidt operators ; Density matrices : the general notion of the state of a quantum system ; Modified axioms for quantum mechanics ; Composite systems and the tensor product ; Multiple particles : bosons and fermions ; "Statistics" and the Pauli exclusion principle ; Exercises -- The path integral formulation of quantum mechanics: Trotter product formula ; Formal derivation of the Feynman path integral ; The imaginary-time calculation ; The Wiener measure ; The Feynman-Kac formula ; Path integrals in quantum field theory ; Exercises -- Hamiltonian mechanics on manifolds: Calculus on manifolds ; Mechanics on symplectic manifolds ; Exercises -- Geometric quantization on Euclidean space: Introduction ; Prequantization ; Problems with prequantization ; Quantization ; Quantization of observables ; Exercises -- Geometric quantization on manifolds: Introduction ; Line bundles and connections ; Prequantization ; Polarizations ; Quantization without half-forms ; Quantization with half-forms : the real case ; Quantization with half-forms : the complex case ; Pairing maps ; Exercises -- A review of basic material: Tensor products of vector spaces ; Measure theory ; Elementary functional analysis ; Hilbert spaces and operators on them.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Status Date due Barcode
Books Books Central Library, IISER Bhopal Reference Section Reference 530.12 H174Q (Browse shelf(Opens below)) Not For Loan 10956
Books Books Central Library, IISER Bhopal General Section 530.12 H174Q (Browse shelf(Opens below)) Available 10957

Includes bibliographical references (pages 545-548) and index.

The experimental origins of quantum mechanics: Is light a wave or a particle? ; Is an electron a wave or a particle? ; Schrödinger and Heisenberg ; A matter of interpretation ; Exercises -- A first approach to classical mechanics: Motion in R¹ ; Motion in R[superscript n] ; Systems of particles ; Angular momentum ; Poisson brackets and Hamiltonian mechanics ; The Kepler problem and the Runge-Lenz vector ; Exercises -- First approach to quantum mechanics: Waves, particles, and probabilities ; A few words about operators and their adjoints ; Position and the position operator ; Momentum and the momentum operator ; The position and momentum operators ; Axioms of quantum mechanics : operators and measurements ; Time-evolution in quantum theory ; The Heisenberg picture ; Example : a particle in a box ; Quantum mechanics for a particle in R [superscript n] ; Systems of multiple particles ; Physics notation ; Exercises -- The free Schrödinger equation: Solution by means of the Fourier transform ; Solution as a convolution ; Propagation of the wave packet : first approach ; Propagation of the wave packet : second approach ; Spread of the wave packet ; Exercises -- Particle in a square well: The time-independent Schrödinger equation ; Domain questions and the matching conditions ; Finding square-integrable solutions ; Tunneling and the classically forbidden region ; Discrete and continuous spectrum ; Exercises -- Perspectives on the spectral theorem: The difficulties with the infinite-dimensional case ; The goals of spectral theory ; A guide to reading ; The position operator ; Multiplication operators ; The momentum operator -- The spectral theorem for bounded self-adjoint operators : statements: Elementary properties of bounded operators ; Spectral theorem for bounded self-adjoint operators, I ; Spectral theorem for bounded self-adjoint operators, II ; Exercises -- The spectral theorem for bounded self-adjoint operators : proofs: Proof of the spectral theorem, first version ; Proof of the spectral theorem, second version ; Exercises -- Unbounded self-adjoint operators: Introduction ; Adjoint and closure of an unbounded operator ; Elementary properties of adjoints and closed operators ; The spectrum of an unbounded operator ; Conditions for self-adjointness and essential self-adjointness ; A counterexample ; An example ; The basic operators of quantum mechanics ; Sums of self-adjoint operators ; Another counterexample ; Exercises -- The spectral theorem for unbounded self-adjoint operators: Statements of the spectral theorem ; Stone's theorem and one-parameter unitary groups ; The spectral theorem for bounded normal operators ; Proof of the spectral theorem for unbounded self-adjoint operators ; Exercises -- The harmonic oscillator: The role of the harmonic oscillator ; The algebraic approach ; The analytic approach ; Domain conditions and completeness ; Exercises -- The uncertainty principle: Uncertainty principle, first version ; A counterexample ; Uncertainty principle, second version ; Minimum uncertainty states ; Exercises -- Quantization schemes for Euclidean space: Ordering ambiguities ; Some common quantization schemes ; The Weyl quantization for R²[superscript n] ; The "No go" theorem of Groenewold ; Exercises -- The Stone-Von Neumann theorem: A heuristic argument ; The exponentiated commutation relations ; The theorem ; The Segal-Bargmann space ; Exercises -- The WKB approximation: Introduction ; The old quantum theory and the Bohr-Sommerfeld condition ; Classical and semiclassical approximations ; The WKB approximation away from the turning points ; The Airy function and the connection formulas ; A rigorous error estimate ; Other approaches ; Exercises -- Lie groups, Lie algebras, and representations: Summary ; Matrix Lie groups ; Lie algebras ; The matrix exponential ; The Lie algebra of a matrix Lie group ; Relationships between Lie groups and Lie algebras ; Finite-dimensional representations of Lie groups and Lie algebras ; New representations from old ; Infinite-dimensional unitary representations ; Exercises -- Angular momentum and spin: The role of angular momentum in quantum mechanics ; The angular momentum operators in R³ ; Angular momentum from the Lie algebra point of view ; The irreducible representations of so(3) ; The irreducible representations of SO(3) ; Realizing the representations inside L²(S²) -- Realizing the representations inside L²(M³) ; Spin ; Tensor products of representations : "addition of angular momentum" ; Vectors and vector operators ; Exercises -- Radial potentials and the hydrogen atom: Radial potentials ; The hydrogen atom : preliminaries ; The bound states of the hydrogen atom ; The Runge-Lenz vector in the quantum Kepler problem ; The role of spin ; Runge-Lenz calculations ; Exercises -- Systems and subsystems, multiple particles: Introduction ; Trace-class and Hilbert-Schmidt operators ; Density matrices : the general notion of the state of a quantum system ; Modified axioms for quantum mechanics ; Composite systems and the tensor product ; Multiple particles : bosons and fermions ; "Statistics" and the Pauli exclusion principle ; Exercises -- The path integral formulation of quantum mechanics: Trotter product formula ; Formal derivation of the Feynman path integral ; The imaginary-time calculation ; The Wiener measure ; The Feynman-Kac formula ; Path integrals in quantum field theory ; Exercises -- Hamiltonian mechanics on manifolds: Calculus on manifolds ; Mechanics on symplectic manifolds ; Exercises -- Geometric quantization on Euclidean space: Introduction ; Prequantization ; Problems with prequantization ; Quantization ; Quantization of observables ; Exercises -- Geometric quantization on manifolds: Introduction ; Line bundles and connections ; Prequantization ; Polarizations ; Quantization without half-forms ; Quantization with half-forms : the real case ; Quantization with half-forms : the complex case ; Pairing maps ; Exercises -- A review of basic material: Tensor products of vector spaces ; Measure theory ; Elementary functional analysis ; Hilbert spaces and operators on them.

There are no comments on this title.

to post a comment.



Contact for Queries: skpathak@iiserb.ac.in