Course in commutative algebra Gregor Kemper.
Series: Graduate texts in mathematics ; 256.Publication details: New York : Springer, c2011.Description: xi, 246 p. : ill. ; 25 cmISBN:- 9783642035449 (Hbk)
- 516.35 K32C 23
- QA251.3 .K456 2011
Item type | Current library | Collection | Call number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
Books | Central Library, IISER Bhopal Reference Section | Reference | 516.35 K32C (Browse shelf(Opens below)) | Not For Loan | Reserve | 8384 |
Includes bibliographical references (p. 235-237) and indexes.
Introduction ---- Part I. The Algebra-Geometry Lexicon. 1. Hilbertʹs Nullstellensatz --- 2. Noetherian and Artinian Rings --- 3. The Zariski Topology --- 4. A Summary of the Lexicon ---- Part II. Dimension. 5. Krull Dimension and Transcendence Degree --- 6. Localization --- 7. The Principal Ideal Theorem --- 8. Integral Extensions ---- Part III. Computational Methods. 9. Grobner Bases --- 10. Fibers and Images of Morphisms Revisited --- 11. Hilbert Series and Dimension ---- Part IV. Local Rings. 12. Dimension Theory --- 13. Regular Local Rings --- 14. Rings of Dimension One ---- Solutions of Some Exercises.
This textbook offers a thorough, modern introduction into commutative algebra. It is intented mainly to serve as a guide for a course of one or two semesters, or for self-study. The carefully selected subject matter concentrates on the concepts and results at the center of the field. The book maintains a constant view on the natural geometric context, enabling the reader to gain a deeper understanding of the material. Although it emphasizes theory, three chapters are devoted to computational aspects. Many illustrative examples and exercises enrich the text.--
There are no comments on this title.