Introduction to smooth manifolds John M. Lee.
Series: Graduate texts in mathematics ; 218.Publication details: New York ; London : Springer, 2013.Edition: 2nd EditionDescription: xv, 708 p. : ill. ; 24 cmISBN:- 9781441999818 (hbk. : alk. paper)
- 1441999817 (hbk. : alk. paper)
- 9781441999825 (ebk.)
- 514.34 L513I2 23
Item type | Current library | Collection | Call number | Status | Notes | Date due | Barcode | |
---|---|---|---|---|---|---|---|---|
![]() |
Central Library, IISER Bhopal General Section | 514.34 L513I2 (Browse shelf(Opens below)) | Available | 8147 | ||||
![]() |
Central Library, IISER Bhopal Reference Section | Reference | 514.34 L513I2 (Browse shelf(Opens below)) | Not For Loan | Reserve | 8053 |
Includes bibliographical references (p. 675-677) and indexes.
1. Smooth manifolds -- 2. Smooth maps -- 3. Tangent vectors -- 4. Submersions, Immersions, and embeddings -- 5. Submanifolds -- 6. Sard's theorem -- 7. Lie groups -- 8. Vector fields -- 9. Integral curves and flows -- 10. Vector bundles -- 11. The contangent bundle -- 12. Tensors -- 13. Riemannian metrics -- 14. Differential forms -- 15. Orientations -- 16. Integration on manifolds -- 17. De Rham cohomology -- 18. The de Rham theorem -- 19. Distributions and foliations -- 20. The exponential map -- 21. Quotient manifolds -- 22. Symplectic manifolds -- Appendices.
There are no comments on this title.