Image from Google Jackets

Manis Valuations and Prüfer Extensions II [electronic resource] / by Manfred Knebusch, Tobias Kaiser.

By: Contributor(s): Series: Lecture Notes in Mathematics ; 2103Publisher: Cham : Springer International Publishing : Imprint: Springer, 2014Description: XII, 190 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319032122
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 512.44 23
LOC classification:
  • QA251.3
Online resources:
Contents:
Overrings and PM-Spectra -- Approximation Theorems -- Kronecker extensions and star operations -- Basics on Manis valuations and Prufer extensions -- Multiplicative ideal theory -- PM-valuations and valuations of weaker type -- Overrings and PM-Spectra -- Approximation Theorems -- Kronecker extensions and star operations -- Appendix -- References -- Index.
In: Springer eBooksSummary: This volume is a sequel to “Manis Valuation and Prüfer Extensions I,” LNM1791. The Prüfer extensions of a commutative ring A are roughly those commutative ring extensions R / A,where commutative algebra is governed by Manis valuations on R with integral values on A. These valuations then turn out to belong to the particularly amenable subclass of PM (=Prüfer-Manis) valuations. While in Volume I Prüfer extensions in general and individual PM valuations were studied, now the focus is on families of PM valuations. One highlight is the presentation of a very general and deep approximation theorem for PM valuations, going back to Joachim Gräter’s work in 1980, a far-reaching extension of the classical weak approximation theorem in arithmetic. Another highlight is a theory of so called “Kronecker extensions,” where PM valuations are put to use in  arbitrary commutative  ring extensions in a way that ultimately goes back to the work of Leopold Kronecker.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)

Overrings and PM-Spectra -- Approximation Theorems -- Kronecker extensions and star operations -- Basics on Manis valuations and Prufer extensions -- Multiplicative ideal theory -- PM-valuations and valuations of weaker type -- Overrings and PM-Spectra -- Approximation Theorems -- Kronecker extensions and star operations -- Appendix -- References -- Index.

This volume is a sequel to “Manis Valuation and Prüfer Extensions I,” LNM1791. The Prüfer extensions of a commutative ring A are roughly those commutative ring extensions R / A,where commutative algebra is governed by Manis valuations on R with integral values on A. These valuations then turn out to belong to the particularly amenable subclass of PM (=Prüfer-Manis) valuations. While in Volume I Prüfer extensions in general and individual PM valuations were studied, now the focus is on families of PM valuations. One highlight is the presentation of a very general and deep approximation theorem for PM valuations, going back to Joachim Gräter’s work in 1980, a far-reaching extension of the classical weak approximation theorem in arithmetic. Another highlight is a theory of so called “Kronecker extensions,” where PM valuations are put to use in  arbitrary commutative  ring extensions in a way that ultimately goes back to the work of Leopold Kronecker.

There are no comments on this title.

to post a comment.



Contact for Queries: skpathak@iiserb.ac.in