Image from Google Jackets

An Introduction to the Kähler-Ricci Flow [electronic resource] / edited by Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj.

By: Contributor(s): Series: Lecture Notes in Mathematics ; 2086Publisher: Cham : Springer International Publishing : Imprint: Springer, 2013Description: VIII, 333 p. 10 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783319008196
Subject(s): Additional physical formats: Printed edition:: No titleDDC classification:
  • 515.94 23
LOC classification:
  • QA331.7
Online resources:
Contents:
The (real) theory of fully non linear parabolic equations -- The KRF on positive Kodaira dimension Kähler manifolds -- The normalized Kähler-Ricci flow on Fano manifolds -- Bibliography.
In: Springer eBooksSummary: This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.   The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Status Date due Barcode
E-Books E-Books Central Library, IISER Bhopal 515.94 (Browse shelf(Opens below)) Not for loan

The (real) theory of fully non linear parabolic equations -- The KRF on positive Kodaira dimension Kähler manifolds -- The normalized Kähler-Ricci flow on Fano manifolds -- Bibliography.

This volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.   The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries

There are no comments on this title.

to post a comment.



Contact for Queries: skpathak@iiserb.ac.in