000 03306nam a22004815i 4500
001 978-1-4939-9063-4
003 DE-He213
005 20210118114613.0
007 cr nn 008mamaa
008 190629s1991 xxu| s |||| 0|eng d
020 _a9781493990634
_9978-1-4939-9063-4
024 _a10.1007/978-1-4939-9063-4
_2doi
050 _aQA564-609
072 _aPBMW
_2bicssc
072 _aMAT012010
_2bisacsh
072 _aPBMW
_2thema
082 _a516.35
_223
100 _aMassey, William S.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 _aA Basic Course in Algebraic Topology
_h[electronic resource] /
_cby William S. Massey.
250 _a1st ed. 1991.
264 _aNew York, NY :
_bSpringer New York :
_bImprint: Springer,
_c1991.
300 _aXVIII, 431 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v127
505 _a1: Two-Dimensional Manifolds -- 2: The Fundamental Group -- 3: Free Groups and Free Products of Groups -- 4: Seifert and Van Kampen Theorem on the Fundamental Group of the Union of Two Spaces. Applications -- 5: Covering Spaces -- 6: Background and Motivation for Homology Theory -- 7: Definitions and Basic Properties of Homology Theory -- 8: Determination of the Homology Groups of Certain Spaces: Applications and Further Properties of Homology Theory -- 9: Homology of CW-Complexes -- 10: Homology with Arbitrary Coefficient Groups -- 11: The Homology of Product Spaces -- 12: Cohomology Theory -- 13: Products in Homology and Cohomology -- 14: Duality Theorems for the Homology of Manifolds -- 15: Cup Products in Projective Spaces and Applications of Cup Products. Appendix A: A Proof of De Rham's Theorem. -- Appendix B: Permutation Groups or Tranformation Groups.
520 _aThis textbook is intended for a course in algebraic topology at the beginning graduate level. The main topics covered are the classification of compact 2-manifolds, the fundamental group, covering spaces, singular homology theory, and singular cohomology theory. These topics are developed systematically, avoiding all unnecessary definitions, terminology, and technical machinery. The text consists of material from the first five chapters of the author's earlier book, Algebraic Topology; an Introduction (GTM 56) together with almost all of his book, Singular Homology Theory (GTM 70). The material from the two earlier books has been substantially revised, corrected, and brought up to date. .
650 _aAlgebraic geometry.
650 _aAlgebraic Geometry.
_0https://scigraph.springernature.com/ontologies/product-market-codes/M11019
710 _aSpringerLink (Online service)
773 _tSpringer Nature eBook
776 _iPrinted edition:
_z9780387974309
776 _iPrinted edition:
_z9781493990627
830 _aGraduate Texts in Mathematics,
_x0072-5285 ;
_v127
856 _uhttps://doi.org/10.1007/978-1-4939-9063-4
912 _aZDB-2-SMA
912 _aZDB-2-SXMS
912 _aZDB-2-BAE
950 _aMathematics and Statistics (SpringerNature-11649)
950 _aMathematics and Statistics (R0) (SpringerNature-43713)
999 _c9360
_d9360